Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16322, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770562

RESUMO

Increasing atmospheric CO2 drives ocean acidification globally. In coastal seas, acidification trends can however be either counteracted or enhanced by other processes. Ecosystem effects of acidification are so far small in the Baltic Sea, but changes should be anticipated unless CO2 emissions are curbed. Possible future acidification trends in the Baltic Sea, conditional on CO2 emissions, climate change, and changes in productivity, can be assessed by means of model simulations. There are uncertainties regarding potential consequences for marine organisms, partly because of difficulties to assign critical thresholds, but also because of knowledge gaps regarding species' capacity to adapt. Increased temporal and spatial monitoring of inorganic carbon system parameters would allow a better understanding of current acidification trends and also improve the capacity to predict possible future changes. An additional benefit is that such measurements also provide quantitative estimates of productivity. The technology required for precise measurements of the inorganic carbon system is readily available today. Regularly updated status evaluations of acidification, and the inorganic carbon system in general, would support management when assessing climate change effects, eutrophication or characteristics of the pelagic habitats. This would, however, have to be based on a spatially and temporally sufficient monitoring program.

2.
Ambio ; 50(2): 393-399, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32885402

RESUMO

Ecosystems around the world are increasingly exposed to multiple, often interacting human activities, leading to pressures and possibly environmental state changes. Decision support tools (DSTs) can assist environmental managers and policy makers to evaluate the current status of ecosystems (i.e. assessment tools) and the consequences of alternative policies or management scenarios (i.e. planning tools) to make the best possible decision based on prevailing knowledge and uncertainties. However, to be confident in DST outcomes it is imperative that known sources of uncertainty such as sampling and measurement error, model structure, and parameter use are quantified, documented, and addressed throughout the DST set-up, calibration, and validation processes. Here we provide a brief overview of the main sources of uncertainty and methods currently available to quantify uncertainty in DST input and output. We then review 42 existing DSTs that were designed to manage anthropogenic pressures in the Baltic Sea to summarise how and what sources of uncertainties were addressed within planning and assessment tools. Based on our findings, we recommend future DST development to adhere to good modelling practise principles, and to better document and communicate uncertainty among stakeholders.


Assuntos
Ecossistema , Resolução de Problemas , Países Bálticos , Humanos , Incerteza
3.
Environ Manage ; 66(6): 1024-1038, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32910293

RESUMO

Decision-support tools (DSTs) synthesize complex information to assist environmental managers in the decision-making process. Here, we review DSTs applied in the Baltic Sea area, to investigate how well the ecosystem approach is reflected in them, how different environmental problems are covered, and how well the tools meet the needs of the end users. The DSTs were evaluated based on (i) a set of performance criteria, (ii) information on end user preferences, (iii) how end users had been involved in tool development, and (iv) what experiences developers/hosts had on the use of the tools. We found that DSTs frequently addressed management needs related to eutrophication, biodiversity loss, or contaminant pollution. The majority of the DSTs addressed human activities, their pressures, or environmental status changes, but they seldom provided solutions for a complete ecosystem approach. In general, the DSTs were scientifically documented and transparent, but confidence in the outputs was poorly communicated. End user preferences were, apart from the shortcomings in communicating uncertainty, well accounted for in the DSTs. Although end users were commonly consulted during the DST development phase, they were not usually part of the development team. Answers from developers/hosts indicate that DSTs are not applied to their full potential. Deeper involvement of end users in the development phase could potentially increase the value and impact of DSTs. As a way forward, we propose streamlining the outputs of specific DSTs, so that they can be combined to a holistic insight of the consequences of management actions and serve the ecosystem approach in a better manner.


Assuntos
Ecossistema , Eutrofização , Biodiversidade , Poluição Ambiental , Humanos , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...